
THESIS

HYPER-NPSNET:EMBEDDED MULTIMEDIA IN A 3D
 VIRTUAL WORLD

by

Charles P. Lombardo

September 1993

Thesis Advisor: Dr. Michael J. ZYDA
Thesis Co-Advisor: LCDR John Falby, USN

Approved for public release; distribution is unlimited.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/ MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

5. FUNDING NUMBERS

i

Lombardo, Charles P.

September 1993 Master’s Thesis

Unclassified Unclassified SARUnclassified

HYPER-NPSNET:EMBEDDED MULTIMEDIA IN A 3D
VIRTUAL WORLD

Naval Postgraduate School
Monterey, CA 93943-5000

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

Approved for public release; distribution is unlimited

As virtual world systems continue to evolve, the need exists to embed multimedia information into the
world so users can query objects for additional information while maintaining frame rates greater than 15
frames per second. The need also exists for software tools to aid in the creation of multimedia documents
intended for virtual worlds. This thesis addresses the problems of how to attach/query multimedia
information to/from 3D locations in a virtual world and the design of a Graphical User Interface (GUI) to
facilitate the creation of multimedia documents. The method chosen is to attach the multimedia
information files to fixed 3D locations called Anchors. The anchors can be queried by the user and the
multimedia information retrieved. Through the same interface, users can create multimedia documents by
creating and/or editing anchor properties. The approach used differs from previous work in that navigation
through the virtual world is unconstrained and a variety of information types may be attached to a single
anchor. With video running and fully interactive navigation underway, the implementation presented
gives rendering performance greater than15 frames per second for high-end graphics workstations.

Virtual Worlds, Virtual Environments, Hypermedia, Multimedia, User
Interface

ii

Approved for public release; distribution is unlimited

HYPER-NPSNET: EMBEDDED MULTIMEDIA IN A 3D VIRTUAL WORLD

by
Charles P. Lombardo
GS12, Civilian DON

MS, University of Washington, Seattle, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1993

Author:
Charles P. Lombardo

Approved By:
Dr. Michael J. ZYDA, Thesis Advisor

LCDR John S. Falby, Thesis Co-Advisor

Ted Lewis, Chairman,
Department of Computer Science

iii

ABSTRACT

As virtual world systems continue to evolve, the need exists to embed multimedia in-

formation into the world so users can query objects for additional information while main-

taining frame rates greater than 15 frames per second. The need also exists for software

tools to aid in the creation of multimedia documents intended for virtual worlds. This thesis

addresses the problems of how to attach/query multimedia information to/from 3D loca-

tions in a virtual world and the design of a Graphical User Interface (GUI) to facilitate the

creation of multimedia documents. The method chosen is to attach the multimedia infor-

mation files to fixed 3D locations called Anchors. The anchors can be queried by the user

and the multimedia information retrieved. Through the same interface, users can create

multimedia documents by creating and/or editing anchor properties. The approach used dif-

fers from previous work in that navigation through the virtual world is unconstrained and

a variety of information types may be attached to a single anchor. With video running and

fully interactive navigation underway, the implementation presented gives rendering per-

formance greater than15 frames per second for high-end graphics workstations.

iv

TABLE OF CONTENTS

I. INTRODUCTION ..1

A. THE IMPORTANCE OF HYPERMEDIA ...1

B. THE NEED FOR HYPERMEDIA IN VIRTUAL ENVIRONMENTS............2

C. HYPER-NPSNET INTRODUCTION...2

D. THESIS ORGANIZATION...5

II. SURVEY OF PREVIOUS WORK...6

A. HYPERMEDIA DEFINITION..6

B. THE VIRTUAL MUSEUM...7

C. THE INFORMATION VISUALIZER AND RELATED STUDIES................8

D. MEDIAVIEW..10

E. WHAT IS SO SPECIAL ABOUT HYPER-NPSNET?...................................11

F. TERMINOLOGY CONVENTIONS...12

III. HYPER-NPSNET SYSTEM REQUIREMENTS ..13

A. SOFTWARE REQUIREMENTS ..13

B. HARDWARE REQUIREMENTS...15

1. Hard Disk Drive Capacity..15

2. Memory..16

3. Input Devices ...16

IV. HYPER-NPSNET DATA STRUCTURES ..18

A. HYPERSYSTEM CLASSES ..18

1. Hypernode..18

2. Anchor..20

3. HyperSystem..22

4. Global Class...25

B. GRAPHICAL USER INTERFACE (GUI) CLASSES....................................27

1. Main Panel ...27

a. Menubar ...28

b. Panel Face ..32

c. Control Class..35

d. Lister Class...35

2. Anchor Editor Panel...38

3. User Preferences Panel ..43

V. HYPERMEDIA AUTHORING..49

v

A. AUTHORING WITH HYPER-NPSNET..49

1. Creating A New World ..49

2. Adding New Anchors To An Existing World..50

3. Saving The World ..51

VI. RESULTS ...53

A. MINIMUM SOFTWARE CAPABILITY ...53

B. HYPERMEDIA DATABASE CREATION..54

C. HARDWARE PERFORMANCE..54

VII. FUTURE WORK..56

A. DATABASE FRONT END...56

B. NON-TERRAIN ANCHORS ..56

1. Vehicle Anchors...56

2. Temporal Anchors ...57

C. NETWORKING ..57

D. TERRAIN DATABASE LOADING CAPABILITIES...................................57

E. MORE SOPHISTICATED AUTHORING ...58

F. USER INTERFACE DEVELOPEMENT ...58

G. STANDARDS COMPATIBILITY ...59

1. MHEG..59

2. Hytime..60

3. JPEG ..60

4. MPEG ..60

APPENDIX: HYPER-NPSNET USER MANUAL ...61

A. STARTING AND EXITING THE PROGRAM ...61

B. LOADING AND SAVING HYPERMEDIA DATABASES..........................61

C. MOVEMENT THROUGH THE VIRTUAL WORLD...................................61

D. TO CREATE OR EDIT INFORMATION ANCHORS..................................62

E. TO SET USER PREFERENCES ..63

F. ANCHOR SELECTION AND MULTIMEDIA QUERYING........................63

LIST OF REFERENCES ..65

INITIAL DISTRIBUTION LIST ..67

1

I. INTRODUCTION

As the evolution of real-time interactive 3D computer graphics continues, the need to

manage and administer vast amounts of information will continue as well. As new frontiers

are discovered, there will certainly be changes associated with the storage and retrieval of

information. One of these changes that has already taken hold is the concept of multimedia.

Multimedia consists of video and audio information in addition to the more usual text and

picture (i.e. graphics) information. Across many platforms, but mainly PCs and Macs, the

development of tools to aid in the creation of multimedia databases is quite active. One area

that has not been so populated with advancements is the area of virtual environments with

embedded multimedia. It is the focus of this work to embed multimedia capabilities into a

real-time interactive 3D virtual environment and develop the necessary user interface and

underlying data structures to make it all work; this is termed hypermedia. The system is

called Hyper-NPSNET and is a prototype of a future version of the popular battlefield

simulator NPSNET developed at the Naval Postgraduate School (NPS) [Zyda91][Zyda92].

A. THE IMPORTANCE OF HYPERMEDIA

There is a continuing need to manage not only data but the structure of data in the

computer dominated environments where an ever increasing number of us work and live.

The vast amounts of data are no longer simply binary numbers that must be crunched, but

highly detailed photographs, diagrams, electronic circuit layouts, video used in education

and in the media, endless news articles broadcast across vast computer networks, etc., etc.

We not only want to know the names of pictures and videos, we want to quickly scan the

available titles to make decisions on what may be relevant or deserving of further attention.

We would like the capability to scan the titles of every research paper or movie that has a

particular phrase in the title. For identification purposes, we may want to see a computer

generated picture of all employees that work for the computer science department and, after

2

selecting one or more, to see their performance reviews for the last six years. The point here

is that different forms of data exist and the need to develop methods of dealing with them

is one of the top computer software priorities for the future.

B. THE NEED FOR HYPERMEDIA IN VIRTUAL ENVIRONMENTS

As the whole Virtual Reality (VR) obsession explodes, many examples come to mind

of beneficial uses of VR. Many of these fall under the category of tutoring systems. These

may include the training of surgeons using virtual operating rooms, or the training of

military personnel in the use of weapons by submersing individuals in a virtual war time

environment. Examples like these go on and on and its clear that these kinds of systems can

only benefit from the addition of multimedia capabilities. Consider the intern surgeon

learning a procedure for cesarean section. Just using the virtual operating table may save

lives or allow the intern to learn the procedure quickly, but if the intern was also given the

capability to replay the operation or to retrieve video clips on the correct execution of some

aspect of the procedure, the overall benefit would be much greater. The system could

monitor the mistakes made and offer additional information that the intern should consider

in applying a particular technique. In addition to video clips, the intern may request certain

statistics during the operation. These may include the probabilities of complications from

any of a range of circumstances for this particular patient. The ability to query VR systems

for a range of information types on demand will allow a more complete immersion into the

virtual world.

C. HYPER-NPSNET INTRODUCTION

Within Hyper-NPSNET, there is the notion of the information anchor. These anchors

are repositories for a variety of multimedia information. The system can have a large

number of anchors, each with hooks into video, audio, textual and graphics media. The user

3

navigates through the system and chooses, either directly or through proximity to an

anchor, the multimedia information to view or hear.

In the current system, the user interface consists of multiple Motif panels to administer

the information anchors and a Silicon Graphics Incorporated (SGI) GLX Widget for

rendering the virtual world. A 3D terrain database is read and used with texture information

to create the ground of the virtual world. A multitude of buildings, trees, rocks, telephone

poles and other miscellaneous objects populate the world. The end user typically loads an

anchor database through the use of pull-down menus and pop-up windows (see

“LOADING AND SAVING HYPERMEDIA DATABASES” in the Appendix). This

database is created through the “Authoring” capabilities of the system (see “AUTHORING

WITH HYPER-NPSNET” in Section V.). Typically the user chooses to have the anchors

visible at all times. This is a visual cue of where the information anchors are attached to the

world. The user can trigger any of the available multimedia information by first selecting

an anchor and then pressing one of the four buttons: Audio, Video, Graphics or Text on the

Hyper-NPSNET main control panel. To select an anchor, the user either selects it with the

mouse directly in the 3D world, or chooses it off a list of available anchors displayed in the

main control panel. Upon selection of an anchor, the main control panel displays the current

anchor name, type and coordinates. In addition, the current anchor is highlighted on the

scrolling list of all available anchors. If the user selects the anchor off of the list, then the

viewing point in the rendering window is transported to the location of the anchor in the 3D

world. This is referred to as an instant aspect change. No matter how the anchor is selected,

the user knows what kind of multimedia information is available for this anchor by which

of the Audio, Video, Graphics and Text buttons are sensitive.

To gain access to all the anchors in the system, the user navigates through the world

using either a Spaceball, Ascension Bird or standard 2D mouse. Through trials, it was

determined that the most intuitive device and a device found on virtually every workstation

4

was the 2D mouse. The Spaceball made it easy to move around, but difficult to pick anchors

within the 3D world. The Ascension Bird introduced a disconcerting shakiness to the

display that could not be overcome.

The user has a number of preferences that can be set through the use of the

“Preferences” pop-up panel. Here the user can specify whether to fly around the world or

drive on the terrain. If driving, the user steers left or right by moving the cursor left or right

outside a small control square in the middle of the rendering window. To speed up, move

the mouse up, to slow down or go backwards, move the mouse down. If flying, the heading

is set with the left-right motion of the mouse, and the pitch is set using the up-down motion

of the mouse. This leaves the speed to be controlled by some other means, so the user can

specify the flight speed in the preferences panel. The user can also specify whether local

anchors only are to be displayed. If local anchors only are being displayed, the user can

specify the range that defines what local is. The default value is 300 meters (the current

terrain is 2 km by 2 km) meaning that only anchors within 300 meters of the current position

of the user are displayed. The last thing the user can specify in the preferences pop-up panel

is whether anchor information is displayed automatically as the user gets close to one of the

anchors. If chosen, the user can specify the range used to trigger the multimedia

information and can choose what information is automatically displayed. The default is

Anchor Auto View off with a range of 20 meters and Audio media tagged. So if the user

sets Anchor Auto View on and leaves other default values alone, then anchor audio tracks

will play anytime the user gets within 20 meters of an anchor. This is known asAudio

Landmines.

Hyper-NPSNET can be used as an authoring tool for hypermedia. To build a new

hypermedia database, the system is brought up without loading an anchor database. The

user then creates all the anchors and attaches all the multimedia using the Anchor Editor

Tool. For existing anchors, the editor is used to change any of the values for the anchor:

5

name, type, coordinates, orientation, audio track filename, video filename, graphics

filename and text filename. For new anchors, the user simply enters all the information

about the new anchor and saves it to the system. An anchor will appear in the 3D location

specified by the coordinates and will have all of the multimedia information available for

viewing or hearing. Note that the audio, video, graphics and text files have already been

created so the role of Hyper-NPSNET is a multimedia player not recorder, but it could

easily be a recorder through the addition of a video cam and some software (see “FUTURE

WORK” on page 56).

D. THESIS ORGANIZATION

In Chapter II, a survey of appropriate previous work is presented. This is followed by

a discussion of the system requirements necessary to implement Hyper-NPSNET in

Chapter III. Chapter IV presents the underlying data structures for the hypersystem and

graphical user interface. How Hyper-NPSNET is used as an authoring tool is covered in

Chapter V, and the results of this work are in Chapter VI. Recommendations for further

work are in Chapter VII. This is followed by the appendix, containing the Hyper-NPSNET

user manual. The appendix is followed by the list of references.

6

II. SURVEY OF PREVIOUS WORK

In the last few years, a number of multimedia systems have been developed and

marketed. The majority of these are designed to be run on PC class machines and therefore

cannot sport a fully interactive real time virtual world interface. The question: When would

a fully interactive 3D multimedia system be required? This question is not easily answered,

but if the capability and the cost of the hardware were not at issue, there would be many

more such systems available than there currently are.

It is difficult to find information on or hear of these kinds of systems. The best sources

are the journals, but these articles seldom give any substantial clues to the underlying

design. Rather they describe the application and leave the rest to the imagination. The

following sections present summaries of three real-time interactive hyper-media systems.

The first is an interactive walk through of a virtual museum built with an object-oriented

toolkit designed to aid in the construction of distributed multimedia applications. The

second is a fully interactive 3D information system, with the third being a multimedia

publication and document structuring system. First, let’s define what hypermedia is.

A. HYPERMEDIA DEFINITION

Hypermedia is defined [Halasz88] as:

Hypermedia is a style of building systems for informationrepresentation and
management around a network of multi-media nodes connected together by
typed links. Such systems have recently become quite popular due to their
potential for aiding in the organization and manipulation of irregularly structured
information in applications ranging from legal research to software engineering.

Nielsen defines Hypertext as the nonsequential access of text, and Hypermedia as the

nonsequential access of different media including text [Nielsen90]. This definition is rather

vague and differs from Halasz’s definition in so much that Halasz suggests that the

7

interface should represent the structure of the system. By this he means the network of the

inter-connecting links and nodes within the system.

The basic physical definition of what a hypertext or hypermedia system is can be

explained using a simple example about a hypertext document from [Nielsen90] (see

Figure 1).

Assume that you start by reading the piece of text markedA. Instead of a single
next place to go, this hypertext structure has three options for the reader: Go to
B, D, orE. Assuming that you decide to go toB, you can then decide to go toC
or to E, and fromE you can go toD. Since it was also possible for your to go
directly fromA toD, this example shows that there may be several different paths
that connect two elements in a hypertext structure.

B. THE VIRTUAL MUSEUM

TheVirtual Museumis a walk through of a simulated museum with displayed artifacts

that can be interacted with by the user [de Mey93]. The main focus of this work is the

design of an object oriented “Multimedia Component Kit”. The components are used to

assemble multimedia applications. The Virtual Museum is an example application

implemented using media objects from the component kit. These objects are responsible for

navigation, rendering and media stream input/output, among others.

A B C

D E F

Figure 1: Simplified view of a small hypertext structure having six
nodes and nine links

8

The user interacts with the museum by navigation and selection of artifacts. The types

of artifacts include still pictures and animated video sequences projected onto different

surfaces. The software also includes a sound server to maintain the audio feedback to the

user. As the user navigates the museum, various artifacts are visible in a reduced resolution

rendering. At a certain point when the viewer is close enough, the artifact is displayed in its

maximum resolution. If the artifact involves video, the animation starts. Various aural cues

are triggered as the user moves about.

Applications built using the component toolkit (including the virtual museum) are

constructed using visual composition. This means that once media objects are defined, like

the navigation object, they can be connected together interactively to form applications.

Actually, iconic representations of the objects are connected together using the mouse. The

objects have interfaces through which they are connected to other objects. These interfaces

are also shown on the icon. Using theseconnection points the user assembles the

application.

C. THE INFORMATION VISUALIZER AND RELATED STUDIES

The Information Visualizer is a real time interactive 3D information displaying front

end to an information storage system developed at the Xerox Palo Alto Research Center

(Xerox PARC) [Card91]. The main focus of the system is 1) the use of 3D/Rooms for

increasing the immediate storage capacity, 2) the user interface to couple the user to the

information agents, and 3) 3D visualization for real time interaction with the data.

The overall concern of the Information Visualizer is to allow access to more

information more quickly than otherwise possible. As pointed out in [Card91], there is a

cost structure associated with the retrieval of information. The analogy is made to an office

and the different types of information readily available, like file cabinets and computer-

based information retrieval systems. If the office layout is designed well, the costs of

9

accessing the information will be minimal. For instance, a Rolodex is kept on the desk, so

the cost of retrieving phone numbers is low. This makes sense because the Rolodex is used

frequently. For less frequently used storage media like the filing cabinet, the information is

in a higher cost structure. At the highest cost might be information not available in the

office at all, but at the local public library. The desk side information is considered

Immediate Storage, the file cabinet is consideredSecondary Storage and the library is

Tertiary Storage.

Once the cost structure of information is realized, then the cost of assimilation

becomes important. The Information Visualizer attempts to minimize these costs by

utilizing Information Workspaces. Computer screens play the roll of workspaces.

Immediate storage information is displayed on the workspace as menus, windows and

icons. Secondary storage is represented as virtual rooms each having multiple workspaces.

The 3D/Rooms can be navigated, by the user, to explore the information system. The users

orientation can be changed and objects can be manipulated with the mouse. Using

navigation, for example, the user can zoom in to show more detail anywhere in the room.

In related studies at Xerox PARC, information is displayed using animated real time

3D computer systems. In one of these studies, the concept of aCone Tree is presented

[Robertson91]. Cone trees are hierarchies laid out in three dimensions. In the study, a cone

tree was used to develop a UNIX file browser. The cone tree represents the directory

structure, with each node representing a directory in the file system. The display shows the

directory structure as a cone facing down. The root directory is at the top. The user can

select any directory using the mouse. Upon selection, the entire directory structure rotates

until the chosen directory is in front of the user. It was determined that an immediate change

of the display was disorienting to the user, so animation was incorporated to allow the user

to perceive the change.

10

The cone tree paradigm works well with any hierarchical information system, but for

vast systems with little hierarchy, thePerspective Wall supports efficient use of space and

time [Mackinlay91]. The Perspective Wall allows the visualization of large linear or nearly

linear data sets. The display shows a wall directly in front of the user where information is

presented. On either side of the front wall is another wall angled back with the appearance

of being folded. The folding metaphor is used to distort the 2D layout into a 3D

visualization. The center wall is for viewing detail and the side walls are for viewing

context. The user can select any feature on any wall with the mouse. Once selected, the wall

moves that item to the center panel with a smooth animation. As in the Cone Trees, this

animation helps the user perceive the change in the displayed system.

D. MEDIAVIEW

MediaView is an editable multimedia publication system[Phillips91]. Even though

MediaView does not incorporate any Virtual World paradigms, it does allow for real time

audio, video and graphics to be imbedded into documentation. The user interface is based

on the what-you-see-is-what-you-get (WYSIWYG) word processor metaphor. Text and all

multimedia objects are subject to the select/cut/copy/paste operations of most modern word

processors. This makes manipulating existing multimedia very easy and allows for the

creation of multimedia documents by nonspecialists.

The potential applications for MediaView are numerous. Imagine fully interactive

textbooks that would allow students to query the system for additional information about

any number of topics in a nonsequential manner. In fact, selected chapters ofComputer

Graphics: Principles and Practice have been transformed into MediaView documents,

making it possible to animate algorithms, explore mathematical expressions, and view 3D

databases. Additional potential lies in such areas as interactive scientific visualization for

Science and Engineering, and digital patient records for Medicine, where photographs or

11

medical data like EKG results can be presented. Training systems can incorporate video

segments in a multimedia shop manual.

E. WHAT IS SO SPECIAL ABOUT HYPER-NPSNET?

Hyper-NPSNET is different from the examples above and from all other such systems

that the author is aware partly because of the unconstrained virtual world that the

hypermedia links and nodes are embedded in. Within Hyper-NPSNET the user can move

through-out the virtual environment unconstrained1. This differs from the Information

Visualizer because in that system the user can only “wonder” where there is data. In Hyper-

NPSNET, the user can navigate over barren terrain even if there are no information nodes

present. The user may be training to drive a tank while looking for enemy vehicles or

looking for landmarks. Information nodes are not everywhere, they must be found. Another

unique feature of Hyper-NPSNET is the ability to attach up to four distinct types of media

information to one physical location. This differs from the Virtual Museum in that only one

artifact is placed at any location.

Upon approaching an anchor, the user can query it for additional information. These

queries can be for information about the current anchor’s location and orientation in the

world or for a playback of some audio or video track that has been attached to the anchor

by the author of the data set. The user can also select any anchor off of a list of all nodes in

the system. As these nodes are visited, links are established, allowing the user to “Back out”

in the reverse order of the initial visits. These features make Hyper-NPSNET unique from

the previous work cited in this chapter.

1. That is until the user hits the edge of the world. Currently the world is on a 2km terrain. Upon
reaching the edge, the user must turn back in to interact with anything meaningful.

12

F. TERMINOLOGY CONVENTIONS

The terminology used for the remainder of this thesis differs slightly from that

established by [Nielsen90]. A 3D location in the virtual world that has an identity and the

capability to attach audio, video, graphics or textual information is called anAnchor. Each

anchor can have associated with it up to fournodes of distinct types. Each node is

represented by the audio, video, graphics or text file attached to it. Thelinks are established

between anchors, and between an anchor and it’s associated information nodes, but not

between information nodes. So after visiting Zydaville 1, if the user then visited the

Command Post, a link is established between them, allowing the user to revisit Zydaville 1

by backing up with theBack button on the Hyper-NPSNET main control panel. All the

anchors, links and information nodes comprise theHypersystem.

13

III. HYPER-NPSNET SYSTEM REQUIREMENTS

Hyper-NPSNET is written in C++ and runs on commercially available SGI IRIS

workstations in all its incarnations. The hardware and software requirements are discussed

in more detail in the following sections.

A. SOFTWARE REQUIREMENTS

The software for Hyper-NPSNET consists of 16 C++ classes each with a specification

file (i.e. .H file) and an implementation file (i.e. the .C file). In addition to the classes, there

are 13 C++ .C files, 9 .H files and an assortment of other miscellaneous files. The total word

count output looks like:

Figure 2: File sizes in lines, words and characters for Hyper-NPSNET software

157 489 4269 Anchor.C
67 300 2317 Anchor.H

626 2078 19674 Control.C
87 376 3361 Control.H

1207 4572 43028 EditAnchor.C
76 344 3043 EditAnchor.H

353 1401 11497 Face.C
41 142 1154 Face.H

485 1530 14218 FileInfo.C
53 173 1561 FileInfo.H

9 16 247 Fileops.C
71 210 2214 Global.C
93 529 4310 Global.H

210 670 5863 Graphic.C
43 134 1178 Graphic.H

101 270 3023 Hnode.C
59 199 1764 Hnode.H
16 43 487 Hstack.C
23 70 675 Hstack.H

237 639 6134 Hsystem.C
57 223 1886 Hsystem.H

299 1101 10007 Lister.C
51 169 1468 Lister.H

923 3215 30484 MenuBar.C
78 250 2276 MenuBar.H
29 92 809 MessBox.C
25 44 455 MessBox.H

150 410 4490 Panel.C

14

Figure 2: File sizes in lines, words and characters for Hyper-NPSNET software
(Continued)

Notice in the last line of Figure 2 above, the total number of lines of code for Hyper-

NPSNET is about 12000. This does not include any of the supporting code that is used to

define and display objects or that for the displaying of image files. For defining and

displaying the 3D objects in the world, the NPS Graphics Description Language

53 144 1315 Panel.H
1044 3722 34862 Preferences.C

69 309 2734 Preferences.H
156 651 4947 TextBox.C

29 61 589 TextBox.H
832 2592 24135 XInput.h

75 251 2102 butt.H
316 858 6122 cube.C

59 144 1327 cube.H
90 229 1768 disdefs.h

8 45 318 externs.h
119 510 3367 getsgi.C

1054 3750 29978 glDraw.C
112 416 3372 glDraw.H

70 217 1860 hyper.C
50 136 1160 hyper.H
86 328 2446 image.H
86 300 1917 image_types.H

365 1654 12061 io.C
23 64 486 main.C
20 47 372 materials.h
10 41 410 objectsDraw.C
76 194 2012 rdobj_funcs.h

139 389 3432 readfiles.c
64 182 1861 shapes.C

7 11 124 shapes.H
82 236 1736 simnet.h

279 1074 9101 spaceball.C
73 251 2041 spaceball.H

198 888 7015 stationaryObjects.C
60 209 1920 stationaryObjects.H
36 115 463 test.C

208 755 6321 unite.C
25 72 777 unite.H
67 195 1890 utils.C

398 1489 10611 viewbounds.C
12064 42218 368844 total

15

(NPSGDL) system is used. NPSGDL was written at NPS and is a high level language for

the specification and manipulation of 3D objects [Wilson92]. For the display of image files,

a package also developed at NPS called NPSImage is used.

All the C++ code is AT&T C++ 3.0 compliant. There is some miscellaneous C code

written in ANSI C 3.1. The complete user interface is written in the native Motif on IRIX

Version 4.0.5. All of the above comprise the minimum requirement for porting this

software to another platform. Note that the rendering is done in a GLX Widget that allows

SGI Graphics Library (GL) rendering in a Motif widget.

B. HARDWARE REQUIREMENTS

The hardware requirements for Hyper-NPSNET parallel the software requirements as

discussed above. A specific hardware requirement is audio capability. This coupled with

the GL rendering require the code be run on an SGI IRIS platform. Beyond this, there is the

consideration of disk space, memory and input devices.

1. Hard Disk Drive Capacity

Currently the audio and video formats used for the hypermedia are in a relatively

uncompressed format. Typical movieplayer video files used by Hyper-NPSNET range

from 700KB to 23MB in size. Yes that IS 23,000,000 bytes. The audio files range from

300KB to 2MB in size. This implies that for a hypermedia database consisting of 50

information anchors with unique audio and video links, the required disk space above and

beyond the operating system and all normal user requirements is about 550MB. This

assumes an average video size of 10MB and an average audio size of 1MB; rather

conservative estimates. This doesn’t take into account the size of the terrain database, nor

the image or text storage requirements. As compression techniques improve and become

more widespread, these number will certainly change. A near term option that is being

looked at for a future version of Hyper-NPSNET uses the Cosmo compress option.

16

2. Memory

Other than disk space, the amount of memory local to a machine plays an

important role in how quickly and smoothly the audio and video clips are played. Typical

memory requirements range from a minimum of 32MB to over 100MB. Since Hyper-

NPSNET has only been run on SGI machines, it is not clear how well the system would run

on a machine that typically doesn’t deal in these kinds of numbers.

3. Input Devices

A number of input devices were used throughout the evolution of Hyper-

NPSNET. All of the input devices to be discussed used the eyeball in hand metaphor

[Robertson91]. The first to be tried was the 6 degree of freedom Spaceball. For users

familiar with the spaceball, navigation is quite intuitive. The ball is grasped in the hand and

is used to manipulate viewpoint motion. The major drawback with the spaceball is the

difficulty in using it as a pick device. In order to select anchors in the 3D world, the cursor

must be manipulated so as to orient it on top of an information anchor. This was near to

impossible to do in a coordinated way with the spaceball.

The second device that was used was theAscension Bird. The Ascension Bird is

a 6 degree of freedom mouse, that is held by the user and allowed to move not only on a

typical 2D surface but also up and down. The hardware includes a transmitter that generates

a strong magnetic field, and a receiver to sense the field. As the Bird is moving in 3D space,

the varying magnetic field is converted back to 3D coordinates. The problem we had with

the Ascension Bird was an annoying jitter in the graphical display of the virtual world that

could not be overcome. This jitter at a minimum disoriented the user and made movement

and selection difficult.

The final method of navigation uses a standard 2D mouse. Whenever the user

wants to move forward, the left mouse button is pressed and held down. If the user wants

to move backward, then the right mouse button is used instead. While either button is

pressed, a red square appears in the middle of the screen. To turn, the user moves the mouse

17

cursor outside of the red box. If the cursor is moved to the right, movement is to the right.

If the cursor is moved to the left, then movement is to the left. The rate at which the turning

occurs is proportional to the distance the cursor is moved away from the edge of the box.

The elevation of the vehicle is changed in a similar fashion by moving the cursor either

above or below the edges of the box. To select any objects off the screen, the user simply

positions the cursor over the anchor and presses and releases the middle mouse button. This

method is easy to use and utilizes an input device that is found on virtually every

workstation.

18

IV. HYPER-NPSNET DATA STRUCTURES

At the heart of Hyper-NPSNET, lie the data structures that make it all possible. Since

Hyper-NPSNET is written in C++, these data structures correspond to C++ classes. The

discussion that follows covers the classes for the hypersystem as well as the classes for the

Motif based GUI. Sample C++ code is presented.

A. HYPERSYSTEM CLASSES

There are three levels of C++ classes that make up the hypersystem. The hypersystem

is defined as the fundamental data structures that hold individual node information and all

the underlying links that enforce the association between anchors and information nodes.

At the lowest level resides the HyperNode. The HyperNode is the basic information

containing entity of the system. An example of a HyperNode is a reference to an audio file

that contains an audio track. Above the HyperNode is the Anchor. The anchor contains

(“has a”) up to four HyperNodes that can represent the audio, video, graphic and text

information associated with the anchor. The anchor is like a hub with different kinds of

information packets attached. A collection of anchors represents the HyperSystem. It is

through the HyperSystem level that individual anchors are created, modified or destroyed.

A fourth class is implemented that contains system-wide global information. This is the

Global class. This class is responsible for maintaining system state information. In the

following four sections, these classes are discussed in detail.

1. Hypernode

As mentioned above, the HyperNode is the fundamental information entity of the

system. The HyperNode Class declaration contains private variables for maintaining node

information (see Figure 3).

19

.

Included in the node information is the node’s identification,id . The node id can

be retrieved using thegetId() access function, but cannot be set. The node id is a unique

identifier generated automatically by the node constructor through the use of

id_generator [Wilson92]. Also maintained is the node type.type describes what kind

of information is held by the node. Currently there are six recognizable node types:

NODE_UNKNOWN, NODE_GENERAL, NODE_AUDIO, NODE_VIDEO,

NODE_GRAPHIC and NODE_TEXT. NODE_UNKNOWN and NODE_GENERAL are

not currently implemented, but are defined for future use. The other node types are self

explanatory. The node type can be retrieved using thegetType() member function and

set through use of thesetType() member function. A node points to a file that contains

either audio, video, graphics or textual data. The filename pointed to is maintained in

filename[80] . The filename string can be set withsetFilename() and retrieved with

getFilename() .

class HyperNode {
unsigned id; // a unique identifier
unsigned type; // type of node
char filename[80]; // filename pointed to
static unsigned id_generator; // auto init to zero

public:
HyperNode();
HyperNode (const HyperNode&);
char* getFilename();
unsigned getId() {return id;}
unsigned getType() {return type;}
HyperNode& operator=(const HyperNode&);
void resetIdGenerator() {id_generator = 0;}
void setFilename(char*);
void setType(unsigned t) {type = t;}

};

Figure 3: HyperNode Class Declaration

20

2. Anchor

The anchors correspond to the abstract information containers. It is the bringing

together of the information within the HyperNodes that makes the Anchor. Associated with

any anchor, there can be audio, video, graphic or textual information attached. The user

merely asks to see and/or hear the information and it is presented. To make this work, the

anchor needs hooks in up to four HyperNodes. As shown in the Anchor declaration (see

Figure 4), an instance of an anchor stores the HyperNode ids internally. This is done in the

audio , video , graphic and text private variables. These are unsigned integers and

merely hold the node id that was automatically generated by the node constructor (see

“Hypernode” in Section IV.A.1.). In all four, the unsigned integer id can be retrieved and

set with the appropriate access functions. For instance, to set or get the video node’s id,

setVideo() or getVideo() is used.

As mentioned earlier, the node ids are unique and this guarantees no collisions

on the node level. This minimizes the amount of information necessary to uniquely identify

the appropriate information. In addition to node info, the anchor must maintain information

specific to itself. This includes it’s own id, which is used later to identify the current anchor

and facilitates retrieval of relevant information in a timely fashion. The anchor id, like the

node id, can be retrieved withgetId() but not set. The anchor type is retrieved with

getType () and set withsetType() . type represents the kind of information object we

are dealing with. Currently only TERRAIN anchor types are implemented. TERRAIN

anchors are attached to the terrain and once created cannot be moved. Additional types

might include VEHICLE and TEMPORAL anchors. A vehicle anchor, then, is an

information object attached to a potentially moving vehicle that carries information with it.

The goal here is to have information available pertaining to the weapons systems or design

capabilities of various vehicles that move around on the terrain and that may be engaged at

different times throughout the simulation. Temporal anchors allow for the creation of

anchors that exist in some kind of predetermined time space, for instance, having an anchor

available for the duration of a particular ground engagement only. This anchor might

21

maintain information relevant to enemy ground movement that is only useful during the

engagement.

The anchor name is used to identify the anchor to the user. This name is displayed

on the main control panel for Hyper-NPSNET (see “Main Panel” in Section IV.B.1.). The

anchor name is retrieved withgetName() . getName() returns the anchor name as a

class Anchor {
unsigned id;
unsigned type; // The type of anchor
char name[40]; // anchor name
float coords[3]; // the coordinates of the anchor
float orientation; // the orientation angle
unsigned audio; // id of audio hypernode
unsigned video; // id of video hypernode
unsigned graphic; // id of graphic hypernode
unsigned text; // id of text hypernode
static unsigned id_generator; // automatically init to zero

public:
Anchor();
Anchor(char *);
Anchor(const Anchor&);
Anchor(AnchorPtr);
unsigned getAudio() {return audio;}
float* getCoords() {return coords;}
unsigned getId() {return id;}
unsigned getGraphic() {return graphic;}
char* getName() {return name;}
float getOrientation() {return orientation;}
unsigned getText() {return text;}
unsigned getType() {return type;}
unsigned getVideo() {return video;}
void resetIdGenerator() {id_generator = 0;};
void setAudio(unsigned a) {audio = a;}
void setCoords(float, float, float);
void setGraphic(unsigned g) {graphic = g;}
void setName(char *);
void setOrientation (float o) {orientation = o;}
void setText(unsigned t) {text = t;}
void setType(unsigned t) {type = t;}
void setVideo(unsigned v) {video = v;}

};

Figure 4: Anchor Class Declaration

22

character string. The name can be set or changed withsetName() . setName() takes a

character string as an argument. The anchor name can be up to 40 characters in length.

Additional information that the anchor is responsible for deals with its current

position and orientation. The current position and orientation are maintained incoords

and orientation respectively. The current position is retrieved withgetCoords() ,

which returns a pointer to three floating point values that represent the x, y, and z

coordinates. The position can be set or changed withsetCoords() that takes the three

floats as arguments. The orientation is retrieved withgetOrientation() and returns a

floating point value that represents an angle between 0 and 360 degrees. The orientation

can be set or changed withsetOrientation() that takes the float as an argument.

3. HyperSystem

Once the anchors are designed, the information is assembled into a manageable

object. This object is the HyperSystem. Through the HyperSystem class, all anchor and

HyperNodes in the system are maintained (see Figure 5).

As can be seen in the class declaration, the HyperSystem object maintains

information about the total number of anchors and the total number of nodes in the system.

This is done through then_anchors andn_nodes private variables. In addition to this, a

list of pointers to all anchors and a separate list of pointers to all nodes is kept in

anchor_list andnode_list . This is done to facilitate rapid searching for information

location and for checking on information duplication. Since the Hypersystem locates both

anchors and nodes using a unique id, some means of decoding is necessary. The decoding

is done through the private variablesanchor_table andnode_table . These are simple

data structures that allow for rapidly locating the address of an anchor or node given its id

(see Figure 6).

As seen in Figure 7, the member functionGetAnchorPtr() does a linear search

on the anchor table. Upon finding the input id, the function returns the associated address.

23

The member functiongetHNode() is virtually identical in function to that of

getAnchorPtr() , but returns an address of a node instead.

class HyperSystem {
unsigned n_anchors; // number of anchors in the sys
unsigned n_nodes; // total number of nodes
List(AnchorPtr) anchor_list; // list of all anchors
List(HNode) node_list; // list of all nodes
AnchorTable anchor_table[10]; // anchor id to address cnvrsn
NodeTable node_table[40]; // node id to address cnvrsn

public:
HyperSystem();
List(AnchorPtr)& AnchorList() {return anchor_list;}
void clearAll();
AnchorPtr CreateAnchor (); // create and attach an anchor
AnchorPtr CreateAnchor (AnchorPtr);
HNode CreateNode (); // create and attach a node
HNode CreateNodeForAnchor (AnchorPtr, unsigned, char*);
AnchorPtr GetAnchorPtr (unsigned);
HNode getHNode (unsigned);
unsigned NAnchors() {return n_anchors;}
unsigned NNodes() {return n_nodes;}
List(HNode)& NodeList() {return node_list;}

};

Figure 5: Hypersystem Class Declaration

// set up the tables necessary for associating id’s
// with actual addresses
typedef struct anchortable {

unsigned id; // the anchor id
AnchorPtr address; // the anchor address

} AnchorTable;

typedef struct nodetable {
unsigned id; // the node id
HNode address; // the node address

} NodeTable;

Figure 6: Structures used to decode Anchor and Node addresses

24

As an example, consider the user/programmer wanting to get or set the audio

track information for the current anchor. To retrieve the current audio filename of the active

anchor, the programmer makes a call similar to:

audio_filename =
GetHNode (GetAnchorPtr (current_anchor_id). getAudio()).getFilename()

The equivalent call to set the audio filename looks like:

GetHNode (GetAnchorPtr (current_anchor_id).getAudio()).set-
Filename(“new_file_name”).

AnchorPtr HyperSystem::GetAnchorPtr (unsigned id)
{

AnchorPtr a_ptr;
for (register i = 0; i < n_anchors; i++) {

if(anchor_table[i].id == id) {
a_ptr = anchor_table[i].address;
break;

}
}
return(a_ptr);

}

HNode HyperSystem::getHNode (unsigned id)
{

HNode node;
for (register i = 0; i < n_nodes; i++) {

if(node_table[i].id == id) {
node = node_table[i].address;
break;

}
}
return(node);}

Figure 7: HyperSystem Anchor and Node Rapid search

25

4. Global Class

The responsibility of the Global class (see Figure 8) is to maintain information

about the current state of the HyperSystem.anchor_editor_open is set when the anchor

editing tool is displayed (see “Anchor Editor Panel” in Section IV.B.2.).

current_anchor_id holds the current anchor id (see “Anchor” in Section IV.A.2.).

current_filename[80] contains the hypermedia database filename that has been read

into Hyper-NPSNET.display_anchors is set when the user sets the anchors visible.

display_texturing is set when texturing is turned on.display_visible_anchors

determines whether all anchors are visible or just ones that are within a certain distance

from the user. In addition, the stack of visited anchors is kept inhstack to allow backing

out of the anchors in reverse order of visitation (see “Main Panel” in Section IV.B.1.). This

gives Hyper-NPSNET a hypertext-like capability. As anchors are visited, they are pushed

onto the stack. To revisit the last anchor or anchors, they are popped off the stack. A pointer

to the HyperSystem is also kept inhsystem to facilitate information queries.save_status

keeps track of whether the system has been changed by the user andtexture_bound

reflects whether textures are currently bound by the program. The texture information is

kept to allow the texturing of certain objects, like the terrain, without affecting objects that

are not textured, like the information anchors.

Although most of the Global class member functions are self explanatory, the

two panel functions deserve a comment. The idea of the Global class is that from any

module in Hyper-NPSNET, certain state information is available. Since system state

changes can be initiated from many different pieces, there must be a mechanism to inform

the panel to update itself whenever a system state change occurs. This is done through the

getPanel() access function. As shown below, the panel class itself can be updated with a

call to its own member functionupdateYourself() (see “Main Panel” in Section IV.B.1.).

So, from anywhere in the system, the state of the panel can be update by:

global->getPanel().updateYourself()

whereglobal is an instance of the Global class.

26

class Global {

unsigned anchor_editor_open; // is anchor editor up or down
unsigned current_anchor_id; // the one thats highlighted
char current_filename[80]; // set after opening a file
unsigned display_anchors; // are the anchors being shown
unsigned display_texturing; // to texture or not
unsigned display_visible_anchors;// display only visible guys
HStack hstack; // the stack of visited anchors
HyperSystem hsystem; // the hypersystem
Panel *panel; // the panel interface
unsigned save_status; // i.e. is a save needed
unsigned texture_bound; // are textures currently bound

public:

Global();
char* getCurrentFilename() {return current_filename;}
unsigned getCurrentAnchorID() {return current_anchor_id;}
unsigned getDisplayAnchors() {return display_anchors;}
unsigned getDisplayTexturing() {return display_texturing;}
unsigned getDisplayVisibleAnchors()

{return display_visible_anchors;}
unsigned getEditorDisplayState() {return anchor_editor_open;}
HyperSystem& getHypersystem() {return hsystem;}
HStack getHstack() {return hstack;}
Panel *getPanel() {return panel;}
unsigned getSaveStatus() {return save_status;}
unsigned getTextureBound() {return texture_bound;}
void setEditorClosed() {anchor_editor_open = EDITOR_CLOSED;}
void setEditorOpen() {anchor_editor_open = EDITOR_OPEN;}
void setCurrentFilename (char*);
void setCurrentAnchorID (unsigned id) {current_anchor_id = id;}
void setDisplayAnchors (unsigned a) {display_anchors = a;}
void setDisplayTexturing (unsigned a) {display_texturing = a;}
void setDisplayVisibleAnchors (unsigned a)

{display_visible_anchors = a;}
void setPanel (Widget);
void setSaveStatus (unsigned s) {save_status = s;}
void setTextureBound (unsigned a) {texture_bound = a;}

};

Figure 8: Global Class Declaration

27

B. GRAPHICAL USER INTERFACE (GUI) CLASSES

The GUI for Hyper-NPSNET is perhaps the most complicated aspect of the program.

As is the case with many pieces of software, the interface is the program. Part of the goal

for this work revolved around an object oriented design paradigm, but another part was to

make use of sophisticated toolkits for building the user interface. Since this was to be

implemented on a Silicon Graphics workstation porting a native X Windows System, it

seemed natural to pick Motif as the toolkit. This turned out to be a good choice although

the learning curve for Motif is quite steep.

The user interface consists of the main control panel that the user interacts with quite

frequently and a collection of pop-up dialog boxes that present themselves when

appropriate. For the most part, these components are either a self contained C++ class or a

collage of other C++ classes. All of the classes are responsible for updating themselves as

the state of the simulation changes.

1. Main Panel

The main panel contains four C++ classes. The four classes defined are the

MenuBar, Face, Control and Lister components (see Figure 9). The MenuBar class is the

pull-down menu part of the panel. It is identified by theFile Edit Displayheading. The Face

class covers the anchor name, type and orientation. The Control class is the eight buttons

on the right hand side of the panel. The Lister class consists of the listing widget andJump

button. Figure 9 has been enlarged to show more detail.

The declaration of the Panel class is shown in Figure 10. As can be seen above,

the Panel class is merely a container for the other four classes. Note the only operation the

panel can perform is to update itself. This is done through a call toupdateYourself() .

Because the panel contains the other four classes, the panel must make sure that all four

parts are updated as well. This is done through calls to theupdateYourself() member

28

functions of the four contained classes. This is shown in the definition of the

updateYourself() member function for the panel class (see Figure 11).

Various display properties of the panel are set using_defaults[] , which is used

during Panel construction (see Figure 12). This is where the text strings are defined that

appear on the Panel and other pop-up dialog boxes.

a. Menubar

In Figure 9, the menubar is identified by the thee pull down menusFile, Edit

and Display. All three pull down menus are shown in Figure 13. The three menus are

Figure 9: HyperNPSNET Control Panel

29

constructed in the MenuBar constructor. For details on the actions of the MenuBar entities

see the appendix. The MenuBar class declaration is shown in Figure 14. As with the other

Panel components, the MenuBar is responsible for updating itself. This means modifying

the displayed menus when the state of the simulator dictates it. These updates are applied

to theDisplay pull down menu. For instance, when the terrain is textured, the menu displays

“Turn Texturing Off”. If the user selects to turn off texturing by selecting the appropriate

menu item, then thedisplayTexturing() member function is called (see Figure 15). This

class Panel : public UIComponent {

private:

MenuBar *_menuBar; // the menu bar
Face *_face; // the anchor display portion
Control *_control; // control panel
Lister *_lister; // the anchor list

protected:

static String _defaults[];

public:

Panel (Widget, char *);
~Panel();
void updateYourself();

};

Figure 10: Panel Class Declaration

void Panel::updateYourself()
{

// the panel merely updates all of its parts
_face->updateYourself();
_menuBar->updateYourself();
_control->updateYourself();
_lister->updateYourself();

}

Figure 11:updateYourself() member function for the Panel Class

30

function first toggles the state of texturing and then callsupdateMenuBarState() , a

slimmed down version of which is shown in Figure 16.updateMenuBarState() insures

the state of the pull-down menus are always up to date. This is a separate process from

updateYourself() (see Figure 17), which directs the anchor editor to update itself (see

“Anchor Editor Panel” in Section IV.B.2.).

String Panel::_defaults[] =
{

“*borderWidth: 0”,
“*highlightThickness: 0”,
“*face*cursorPositionVisible: False”,
“*control.audio.labelString: Audio”,
“*control.video.labelString: Video”,
“*control.graphic.labelString: Graphic”,
“*control.text.labelString: Text”,
“*control.back.labelString: Back”,
“*control.ops.labelString: Operations”,
“*control.advanced.labelString: Advanced”,
“*control.minimize.labelString: Minimize”,
“*list.jump.labelString: Jump”,
“*editAnchor.title: HyperNPSNet Anchor Editor”,
“*preferences.title: HyperNPSNet User Preferences”,
NULL,

};

Figure 12:_defaults for the Panel Class

Figure 13: Hyper-NPSNET Control Panel Pull-down Menus

31

class MenuBar : public BasicComponent {
private:

Widget anchors;
Widget localAnchors;
Widget texture;
Widget openButton;
Widget saveButton;
Widget saveAsButton;
EditAnchor *_edit;
Preferences *_prefs;
unsigned editor_active;
static void anchorCallback (Widget, XtPointer, XtPointer);
static void displayAnchorsCallback (Widget, XtPointer, XtPointer);
static void displayResetViewCallback (Widget, XtPointer, XtPointer);
static void displayLocalAnchorsCallback (Widget, XtPointer,

XtPointer);
static void displayTexturingCallback (Widget, XtPointer, XtPointer);
static void exitCallback (Widget, XtPointer, XtPointer);
static void newCallback (Widget, XtPointer, XtPointer);
static void openCallback (Widget, XtPointer, XtPointer);
static void preferencesCallback (Widget, XtPointer, XtPointer);
static void promptOpenCallback (Widget, XtPointer, XtPointer);
static void promptSaveCallback (Widget, XtPointer, XtPointer);
static void saveCallback (Widget, XtPointer, XtPointer);
static void saveAsCallback (Widget, XtPointer, XtPointer);
void anchor();
void displayAnchors();
void displayResetView();
void displayLocalAnchors();
void displayTexturing();
void myExit();
void myNew();
void myOpen();
void preferences();
void promptOpen (XmSelectionBoxCallbackStruct *);
void promptSave (XmSelectionBoxCallbackStruct *);
void save();
void saveAs();
void updateMenuBarState();
void createFileMenu (Widget, char*);
void createEditMenu (Widget, char*);
void createDisplayMenu (Widget, char*);

public:
MenuBar (Widget, char*);
unsigned getEditorActive() { return editor_active; }
void setEditorActive(Boolean state) { editor_active = state; }
void updateYourself();

};

Figure 14: MenuBar Class Declaration

32

b. Panel Face

Just below the MenuBar is the Face (see Figure 9). The face is responsible

for displaying the current anchor name, its type and its coordinates. In Figure 9, the current

anchor is the “Zydaville 1” anchor. It is located at coordinates (1135.0, 330.0, 1400.0) and

has a TERRAIN type. When the current anchor changes, the face updates the displayed

information to match. The Face class declaration shows the only public access functions

void MenuBar::displayTexturing()
{

if (global.getDisplayTexturing())
global.setDisplayTexturing (False);

else
global.setDisplayTexturing (True);

// now update the menubar state
updateMenuBarState();

}

Figure 15:displayTexturing() for MenuBar Class

void MenuBar::updateMenuBarState()
{

// removed all except for texturing stuff

// set the label text for texturing on or off
if (global.getDisplayTexturing())

xmstr = XmStringCreateSimple (“Turn Texturing Off”);
else

xmstr = XmStringCreateSimple (“Turn Texturing On”);

n = 0;
XtSetArg (args[n], XmNlabelString, xmstr); n++;
XtSetArg (args[n], XmNmnemonic, ’T’); n++;
XtSetValues (texture, args, n);

}

Figure 16: Reduced version ofupdateMenuBarState() for MenuBar Class

33

are the constructor and theupdateYourself() member function (see Figure 18). The

updateYourself() member function is shown in Figure 19. Notice the line:

void MenuBar::updateYourself()
{

// the only thing to do is make sure the anchor editor is updated
_edit->updateYourself();

// note the menubar status is constantly being updated anyway
// and shouldn’t need to re-updated here

}

Figure 17:updateYourself() for MenuBar Class

class Face: public BasicComponent {

private:

Widget _label; // the “Anchors Available:” label
Widget _namedata; // the current anchor name
Widget _namelabel; // “Anchor Name:”
Widget _typedata; // the current anchor type
Widget _typelabel; // “Anchor Type:”
Widget _xdata; // the x coord
Widget _ydata; // the y coord
Widget _zdata; // the z coord

void setCoordX (char*); // change the x coord
void setCoordY (char*); // change the y coord
void setCoordZ (char*); // change the z coord
void setNameData (char*); // change the name
void setTypeData (char*); // change the type

public:

Face (Widget, char *);
void updateYourself();

};

Figure 18: Face Class Declaration

34

void Face::updateYourself()
{

// get the current ID
unsigned id = global.getCurrentAnchorID();

// if id == 0 blank everything out
if (id == 0) {

setNameData (““);
setTypeData (““);
XmTextFieldSetString (_xdata, ““);
XmTextFieldSetString (_ydata, ““);
XmTextFieldSetString (_zdata, ““);

}

else {
// get the anchor info that relates to the face
AnchorPtr a = global.getHypersystem().GetAnchorPtr (id);
char *name = a->getName();
unsigned type = a->getType();
float *coords = a->getCoords();

// set the name
setNameData (name);

// set the type
switch (type) {
case ANCHOR_TERRAIN:

setTypeData ((char *) ANCHOR_TERRAIN_STRING);
break;

default:
setTypeData ((char *) ANCHOR_UNKNOWN_STRING);
break;

}

// set the coords
char buf[10];
sprintf (buf, “%6.3f”, coords[0]);
setCoordX (buf);
sprintf (buf, “%6.3f”, coords[1]);
setCoordY (buf);
sprintf (buf, “%6.3f”, coords[2]);
setCoordZ (buf);

 }
}

Figure 19:updateYourself() for Face Class

35

AnchorPtr a = global.getHypersystem().GetAnchorPtr (id) ;

Here, an instance of the global class is used to get a pointer to the Hyper-System. This

pointer is then used to get a pointer to the current anchor. The anchor pointer is used in

subsequent lines in Figure 19 to retrieve the anchor name, type and coordinates. This style

is used throughout the application whenever the GUI side of the program needs any Hyper-

System information.

c. Control Class

The Control class consists of the eight buttons on the right hand side of the

Hyper-NPSNET panel (see Figure 9). The top four buttons operate on the audio, video,

graphic and text information. That is, when any of the buttons are pressed, the appropriate

action is taken. Depending on the button, this may mean to play an audio track, or view a

video clip, or to view a still image or text file. As with the other classes, the Control class

must monitor the current anchor id and make the appropriate buttons sensitive or

insensitive based on whether that particular type of information is currently available. The

class declaration is shown in Figure 20, followed byupdateYourself() in Figure 21.

The basic test for all the media buttons consists of checking if a valid

filename has been attached to the node. Currently this means any non-NULL filename. The

existence of the file is not checked as this should be done at the time the filename is first

attached to the node. As for the operation of the BACK button, as long as there is a current

anchor id available, then the button is made sensitive. If there is no current anchor id, then

all of the control buttons are insensitized.

d. Lister Class

The Lister class is the final piece of the main panel. The Lister is responsible

for displaying a list of available anchors. The anchors are displayed by their name and are

arranged by anchor id in an increasing down fashion. Any list item is selectable with the

mouse by either clicking once followed by clicking theJump button, or by double clicking

on the list item. Upon setting a new current anchor, the entire main panel will update itself

36

class Control : public BasicComponent {
private:

Widget _advancedWidget; // advanced button
Widget _audioWidget; // audio button
Widget _backWidget; // back button
Graphic *_graphic; // used to view images
Widget _graphicWidget; // graphic button
Widget _minimizeWidget; // minimize button
Widget _opsWidget; // operations button
TextBox *_text; // a popup scrolled text guy
Widget _textWidget; // text button
Widget _videoWidget; // video button
void createControlButtons();
void registerControlButtonCallbacks();
void audio(); // Called onaudio button hit
void video(); // video
void graphic(); // graphic
void text(); // text
void back(); // back
void ops(); // operations
void advanced(); // advanced
void minimize(); // minimize

// Static member functions that interface the above member functions
// with Motif widget callbacks
static void audioCallback (Widget, XtPointer, XtPointer);
static void videoCallback (Widget, XtPointer, XtPointer);
static void graphicCallback (Widget, XtPointer, XtPointer);
static void textCallback (Widget, XtPointer, XtPointer);
static void backCallback (Widget, XtPointer, XtPointer);
static void opsCallback (Widget, XtPointer, XtPointer);
static void advancedCallback (Widget, XtPointer, XtPointer);
static void minimizeCallback (Widget, XtPointer, XtPointer);
char *Control::getCurrentAnchorNodeFilename (unsigned type);
void insensitizeEverything();
void setAudioInsensitive() { XtSetSensitive (_audioWidget, False); }
void setAudioSensitive() { XtSetSensitive (_audioWidget, True); }
void setBackInsensitive() { XtSetSensitive (_backWidget, False); }
void setBackSensitive() { XtSetSensitive (_backWidget, True); }
void setGraphicInsensitive()

{ XtSetSensitive (_graphicWidget, False); }
void setGraphicSensitive() { XtSetSensitive (_graphicWidget, True); }
void setTextInsensitive() { XtSetSensitive (_textWidget, False); }
void setTextSensitive() { XtSetSensitive (_textWidget, True); }
void setVideoInsensitive() { XtSetSensitive (_videoWidget, False); }
void setVideoSensitive() { XtSetSensitive (_videoWidget, True); }

public:
Control (Widget, char * , Panel *);
void updateYourself();

};

Figure 20: Control Class Declaration

37

void Control::updateYourself()
{

// get the current ID
unsigned id = global.getCurrentAnchorID();

// if id == 0 insensitize all the buttons
if (id == 0) {

setAudioInsensitive();
setVideoInsensitive();
setGraphicInsensitive();
setTextInsensitive();
setBackInsensitive();

}

else {
// turn on only the buttons that need to be on
// what this means is check all nodes for the current anchor to see
// if they have a filename associated with them. If no filename, then
// leave the button insensitive

if (strcmp (getCurrentAnchorNodeFilename (HYPER_AUDIO), ““) == 0)
setAudioInsensitive();

else
setAudioSensitive();

if (strcmp (getCurrentAnchorNodeFilename (HYPER_GRAPHIC), ““)
== 0)

setGraphicInsensitive();
else

setGraphicSensitive();

if (strcmp (getCurrentAnchorNodeFilename (HYPER_VIDEO), ““) == 0)
setVideoInsensitive();

else
setVideoSensitive();

if (strcmp (getCurrentAnchorNodeFilename (HYPER_TEXT), ““) == 0)
setTextInsensitive();

else
setTextSensitive();

// if the current id != 0 then activate the back button
setBackSensitive();

}

// make sure to update any of the objects that need updating
_text->updateYourself();

}

Figure 21:updateYourself() for Control Class

38

as previously described. The Lister must always insure that the current anchor is

highlighted whenever the user has not clicked on a non-current anchor in the list. In

addition, theJump button must always be made sensitive whenever an anchor is being

selected. The class declaration is shown in Figure 22, andupdateYourself() is shown in

Figure 23.

2. Anchor Editor Panel

The anchor editor panel is used to display more detailed information about the

current anchor and for authoring or editing purposes. The panel layout shows three distinct

class Lister : public BasicComponent {

private:

Widget _lister; // the scrolled list
Widget _scroll; // surrounds _list
Widget _jumpWidget; // the jump button

unsigned _tempAnchor; // holds temp anchor id from
// single selection

void jump(); // called on “jump”
void doubleClick (XmListCallbackStruct *);
void setJumpInsensitive() { XtSetSensitive (_jumpWidget,

False); }
void singleSelection (XmListCallbackStruct *);

static void doubleClickCallback (Widget, XtPointer, XtPointer);
static void jumpCallback (Widget, XtPointer, XtPointer);
static void singleSelectionCallback (Widget, XtPointer,

XtPointer);

void deleteAllListItems() { XmListDeleteAllItems (_lister); }
void setSelection (char*);

public:

Widget getListWidget() { return _lister; }
Lister (Widget, char *);
void updateYourself();

};

Figure 22: Lister Class Declaration

39

areas (see Figure 24). The top area displays the anchor name, type, orientation and

coordinates. The middle area lists the filenames associated with the audio, video, graphics

and textual information attached to the anchor. The bottom part is the button bar where

void Lister::updateYourself()
{

// update the entire list
// start at the beginning of the systems anchorlist
deleteAllListItems();

// for each anchor in the list ...
for(register i = 0; i < global.getHypersystem().NAnchors(); i++) {

// get an anchor
c_anchor = global.getHypersystem().AnchorList().current_data();
id = c_anchor->getId();
name = c_anchor->getName();

// make the string
sprintf(string, “%u %s”, id, name);
xmstr = XmStringCreateSimple (string);

// add this anchors string to the listview
XmListAddItem(global.getPanel()->getListWidget(), xmstr, 0);

// free the XmString
XmStringFree (xmstr);

// move on the the next anchor
global.getHypersystem().AnchorList().next();

}

// get the current ID and blank selection if == 0
id = global.getCurrentAnchorID();
if (id == 0)
XmListDeselectAllItems (_lister);

else {
// get the anchor from the id
AnchorPtr a = global.getHypersystem().GetAnchorPtr (id);

// get the name
name = a->getName();

// make the selection string and select it
char string[40];
sprintf(string, “%u %s”, id, name);
setSelection (string);

 }
}

Figure 23:updateYourself() for Lister Class

40

changes are saved or ignored. The panel can also be closed using theClose button. New

anchors can be created and added with theNew Anchor andAdd Anchor buttons.

Unlike the main panel, the anchor editor panel consists of only one C++ class.

The class declaration is shown in Figure 25. In the class declaration, one can see the

individual widget parts that make up the panel. For instance, the individual widgets that

make up the button bar are:_addAnchor, _close, _newAnchor, _revert and_save .

There are a number of private member functions but the only public ones are for popping

the panel up and down and for updating the display. As with the components of the main

panel, the anchor editor is responsible for self maintenance, that is, it must always display

the correct information. This is done through a call toupdateYourself() (see Figure 26).

There are three conditions checked for byupdateYourself() . The first case is where no

anchor has been selected. In this case, the editor panel will display all blank fields. The

second is for the creation of a new anchor. In this case, the fields are filled with “New

anchor” information awaiting the user to overwrite them with the correct information. The

Figure 24: The Anchor Editor Panel

41

class EditAnchor : public BasicComponent {
private:

Widget _addAnchor; // duplicate current anchor as new
Widget _audio; // the audio filename
Widget _close; // the close/cancel button
Widget _graphic; // the graphic filename
Widget _nameData; // the name textfield
Widget _newAnchor; // button to create new anchor
unsigned _newAnchorState; // is a new anchor being created?
Widget _orientationData; // the orientation textfield
Widget _revert; // the undo all button
Widget _save; // the save button
unsigned _saveState; // is saving necessary or not?
Widget _text; // the text filename
Widget _typeData; // the type textfield
Widget _video; // the video filename
Widget _xData; // the x coordinate
Widget _yData; // the y coordinate
Widget _zData; // the z coordinate

void addAnchor();
static void addAnchorCallback (Widget, XtPointer, XtPointer);
void close();
static void closeCallback (Widget, XtPointer, XtPointer);
void newAnchor();
static void newAnchorCallback (Widget, XtPointer, XtPointer);
void revert();
static void revertCallback (Widget, XtPointer, XtPointer);
void save();
static void saveCallback (Widget, XtPointer, XtPointer);
void setAudio (char*);
void setCoordX (char*);
void setCoordY (char*);
void setCoordZ (char*);
void setGraphic (char*);
void setName (char*);
void setOrientation (char*);
void setText (char *);
void setType (char*);
void setValueChangeCallback();
void setVideo (char*);
void updateEditorState();
void valueChanged();
static void valueChangedCallback (Widget, XtPointer, XtPointer);

public:
EditAnchor (Widget, char*);
void showYourself();
void updateYourself();

};

Figure 25: EditAnchor Class Declaration

42

void EditAnchor::updateYourself()
{

// get the current ID
nsigned id = global.getCurrentAnchorID();

// if id == 0 blank everything out
if (id == 0 && _newAnchorState == EDIT_NEW_ANCHOR_NOT_PENDING) {

setName (““);
setType (““);
setOrientation (““);
setCoords (““);
setAudio (““);
setVideo (““);
setGraphic (““);
setText (““);

}
else if (_newAnchorState == EDIT_NEW_ANCHOR_PENDING) {

setName (“New Anchor”);
setType ((char *) ANCHOR_TERRAIN_STRING);
setOrientation (“0.0”);
setCoords (“0.0”);
setAudio (“New Audio”);
setVideo (“New Video”);
setGraphic (“New Graphic”);
setText (“New Text”);

}
else {

// get the anchor
AnchorPtr a = global.getHypersystem()->GetAnchorPtr (id);
char *name = a->getName();
unsigned type = a->getType();
float *coords = a->getCoords();
setName (name);
switch (type) {
case ANCHOR_TERRAIN:

setType ((char *) ANCHOR_TERRAIN_STRING);
break;

default:
setType ((char *) ANCHOR_UNKNOWN_STRING);
break;

}

// set the orientation
float orientation = a->getOrientation();
char buf[10];
sprintf (buf, “%6.3f”, orientation);
setOrientation (buf);

Figure 26:updateYourself() for the EditAnchor Class

43

third case is the general case, where a current anchor id exists and soupdateYourself()

retrieves the correct information from the hypersystem and fills the fields accordingly.

3. User Preferences Panel

The user preferences panel allows the user to specify the operating characteristics

of certain features of the program (see Figure 27). This panel consists of four distinct

regions separated by horizontal and vertical bars. The upper left region is theAnchor Auto

View region. In this region the user specifies any media formats that are to be displayed

automatically whenever the user’s eye position is within the distance specified by the

// set the coords
sprintf (buf, “%6.3f”, coords[0]);
setCoordX (buf);
sprintf (buf, “%6.3f”, coords[1]);
setCoordY (buf);
sprintf (buf, “%6.3f”, coords[2]);
setCoordZ (buf);

// set the node filenames
// audio first
unsigned nodeid = a->getAudio();
HNode node = (global.getHypersystem())->getHNode (nodeid);
setAudio (node->getFilename());

// now video
nodeid = a->getVideo();
node = global.getHypersystem()->getHNode (nodeid);
setVideo (node->getFilename());

// now graphic
nodeid = a->getGraphics();
node = global.getHypersystem()->getHNode (nodeid);
setGraphic (node->getFilename());

// and last, text
nodeid = a->getText();
node = global.getHypersystem()->getHNode (nodeid);
setText (node->getFilename());

}

// set the save state to EDIT_SAVE_NOT_NEEDED
_saveState = EDIT_SAVE_NOT_NEEDED;
updateEditorState();

}

Figure 26:updateYourself() for the EditAnchor Class (Continued)

44

Distance field to an anchor. In Figure 27 the distance specified is 20 meters. Notice that

theAnchor Auto View button will turn on the sensitivity of theAudio, Video, Graphics and

Text buttons. The upper right region is the movement type region. Here the user specifies

whether the vehicle being operated is a ground vehicle or a flying vehicle1. If flying, the

speed can be modified through theSpeed text field widget. Right below the movement area

is theLocal Anchors Only area. Here the user specifies whether all information anchors are

displayed or only ones close to the users eye position. The distance that specifies what is

local can be changed through theDistance text field widget. The last region in the panel is

the button bar. This is where the user applies the changes made or ignores them and lets the

preferences revert back to the previously saved state. The panel can also be closed from the

button bar.

As with the Anchor Editor panel, the User Preferences panel is a single C++

class. The class declaration is shown in Figure 28. There are a number of individual widgets

1. Currently only flying vehicles are implemented.

Figure 27: User Preferences Panel

45

class Preferences : public BasicComponent {
private:

Widget _apply; // the apply button
Widget _audio; // the audio radio button
Widget _autoViewToggle; // the anchor auto view button
Widget _autoDistanceData; // the auto distance text field
Widget _autoDistanceLabel; // the auto distance label
Widget _close; // the close/cancel button
Widget _driveToggle; // the drive toggle button
Widget _flyToggle; // the fly toggle button
Widget _graphics; // the graphic radio button
Widget _localDistanceData; // the local distance text field
Widget _localDistanceLabel; // local distance label and data RC
Widget _localToggle; // local anchors only toggle button
Widget _revert; // the undo all button
unsigned _saveState; // is saving necessary or not
Widget _speedLabel; // the speed label guy
Widget _speedData; // the speed text field
Widget _text; // the text radio button
Widget _video; // the video radio button

void apply();
static void applyCallback (Widget, XtPointer, XtPointer);
void autoView();
static void autoViewCallback (Widget, XtPointer, XtPointer);
void close();
static void closeCallback (Widget, XtPointer, XtPointer);
void createButtons (Widget, char*);
void createTopInfo (Widget, char*);
void drive();
static void driveCallback (Widget, XtPointer, XtPointer);
void fly();
static void flyCallback (Widget, XtPointer, XtPointer);
void local();
static void localCallback (Widget, XtPointer, XtPointer);
void registerCallbacks();
void removeCallbacks();
void revert();
static void revertCallback (Widget, XtPointer, XtPointer);
void updatePreferencesState();
void valueChanged();
static void valueChangedCallback (Widget, XtPointer, XtPointer);

public:
Preferences (Widget, char*);
void showYourself();
void updateYourself();

};

Figure 28: Preferences Class Declaration

46

that make up the panel and this is reflected in the private widget variables. As in most of

the other classes, there is limited public access to this class, namelyshowYourself() and

updateYourself(). showYourself() is shown in Figure 29.showYourself() is

responsible for popping the panel up and down when requested.updateYourself() is

shown in Figure 30.updateYourself() ensures that the displayed user preferences match

values stored within the Global class slots and that the state of the buttons matches the

current operation.

void Preferences::showYourself()
{

// toggle the visibility of the preferences panel
if (XtIsRealized (_w)) {

XtPopdown (_w);
XtUnrealizeWidget (_w);

}

else {
XtRealizeWidget (_w);
XtPopup (_w, XtGrabNone);

// set the state variables
_saveState = PREF_APPLY_NOT_NEEDED;

// remove all the callbacks while your opening the tool
removeCallbacks();

// now update all fields of the panel
updateYourself();

// now register the callbacks
registerCallbacks();

}
}

Figure 29:showYourself() for Preferences Class

47

void Preferences::updateYourself()
{

// set the auto view distance
float value = global.getAutoViewRange();
char buf[20];
sprintf (buf, “%6.3f”, value);
XmTextFieldSetString (_autoDistanceData, buf);
XmTextFieldSetInsertionPosition (_autoDistanceData, 0);

// set audio, video, graphics and text toggle buttons as appropriate
if (global.autoAudio())

XmToggleButtonSetState (_audio, True, False);
else

XmToggleButtonSetState (_audio, False, False);
if (global.autoVideo())

XmToggleButtonSetState (_video, True, False);
else

XmToggleButtonSetState (_video, False, False);
if (global.autoGraphics())

XmToggleButtonSetState (_graphics, True, False);
else

XmToggleButtonSetState (_graphics, False, False);
if (global.autoText())

XmToggleButtonSetState (_text, True, False);
else

XmToggleButtonSetState (_text, False, False);

// set the flying speed
value = global.getFlyingSpeed();
sprintf (buf, “%6.3f”, value);
XmTextFieldSetString (_speedData, buf);
XmTextFieldSetInsertionPosition (_speedData, 0);

// set the local anchor distance
value = global.getLocalAnchorsRange();
sprintf (buf, “%6.3f”, value);
XmTextFieldSetString (_localDistanceData, buf);
XmTextFieldSetInsertionPosition (_localDistanceData, 0);

// check the auto view mode
if (global.getAutoViewMode() == True) {

// set the anchor auto view button on
XmToggleButtonSetState (_autoViewToggle, True, False);

// make sure all the auto view guys are sensitive
XtSetSensitive (_autoDistanceData, True);
XtSetSensitive (_autoDistanceLabel, True);
XtSetSensitive (_audio, True);
XtSetSensitive (_video, True);
XtSetSensitive (_graphics, True);

Figure 30:updateYourself() for the Preferences Class

48

XtSetSensitive (_text, True);
}
else {

// set anchor auto view toggle button off
XmToggleButtonSetState (_autoViewToggle, False, False);
// insensitize the rest of the auto view stuff
XtSetSensitive (_autoDistanceData, False);
XtSetSensitive (_autoDistanceLabel, False);
XtSetSensitive (_audio, False);
XtSetSensitive (_video, False);
XtSetSensitive (_graphics, False);
XtSetSensitive (_text, False);

}
// check the movement type
if (global.getLocomotionMode() == GLOBAL_DRIVE_MODE) {

// set drive toggle button on
XmToggleButtonSetState (_driveToggle, True, False);
// set fly toggle button off
XmToggleButtonSetState (_flyToggle, False, False);
// insensitize the speed guy
XtSetSensitive (_speedLabel, False);
XtSetSensitive (_speedData, False);

}
else {

// set drive toggle button off
XmToggleButtonSetState (_driveToggle, False, False);
// set fly toggle button on
XmToggleButtonSetState (_flyToggle, True, False);
// sensitize the speed guy
XtSetSensitive (_speedLabel, True);
XtSetSensitive (_speedData, True);

}

// check the local anchors guy
if (global.getLocalAnchors() == TRUE) {

// set the local anchors toggle on
XmToggleButtonSetState (_localToggle, True, False);
// sensitize the distance rc guy
XtSetSensitive (_localDistanceData, True);
XtSetSensitive (_localDistanceLabel, True);

}
else {

// set the local anchors toggle off
XmToggleButtonSetState (_localToggle, False, False);
// insensitize the distance rc guy
XtSetSensitive (_localDistanceData, False);
XtSetSensitive (_localDistanceLabel, False);

}

// now make sure the state of the buttons is correct
updatePreferencesState();

}

Figure 30:updateYourself() for the Preferences Class (Continued)

49

V. HYPERMEDIA AUTHORING

Unfortunately, it is difficult to design typical hypertext documents due to the

difference in document structure from classical linear text [Nielsen90]. This statement is

also true for hypermedia documents, but even goes a step further. To design hypermedia

documents that are informative, the media used must be relevant. This is easier said than

done. When writing a text based document, the author comes up with the words, but when

writing a hypermedia document, you may need audio clips, video segments and graphics in

addition to the text. Even though there are quite a number of available video and audio

samples available, what one really needs is the capability to grab any audio or video

segments through a variety of means and make them hypermedia capable. By this I mean

get them in some digital format and store them as a file in a computer. The capability to do

this is just now becoming common, but until hypermedia authoring systems are also

common place, creating useful hypermedia documents will be a difficult task.

A. AUTHORING WITH HYPER-NPSNET

The author system in Hyper-NPSNET is limited but easy to use. In the case of Hyper-

NPSNET, authoring means the ability to designate where information anchors are placed,

what the orientation of the anchor is and what multimedia files will be associated with that

anchor. All of this is accomplished through the Anchor Editor (see “Anchor Editor Panel”

in Section IV.B.2.). The Anchor Editor is used not only for displaying and changing anchor

attributes, it is also used for the creation of new anchors. New anchors can be added to an

existingworld database or a newworld can be created.

1. Creating A New World

To create a new world, the program is started as usual (see “STARTING AND

EXITING THE PROGRAM” in the Appendix). Instead of loading an existing world

50

database, bring up the Anchor Editor panel by selecting “Anchor” from the “Edit” pull

down menu on the main Hyper-NPSNET control panel. Since no database has been entered

and there is no current anchor, all fields in the Anchor Editor will be blank.

To initiate the new anchor, select the “New Anchor” button at the bottom of the

panel. Once pressed, all fields on the editor will be filled in with default information. This

default information currently sets the anchor location to (0.0, 0.0, 0.0) with an orientation

of 0.0 degrees. The default name given is “New Anchor” and the anchor type is set to

“Terrain”. The default multimedia file names are set to “New Audio”, “New Video”, “New

Graphic” and “New Text” for the audio, video, graphics and text nodes respectively.

At this point, using the mouse and keyboard, the author overrides these defaults

with his own preferences. When all attributes of the new anchor are satisfactory, the author

presses the “Save” button. This new anchor will be added to the world and will appear in

the scrolling anchor list in the Hyper-NPSNET control panel. As this is done, all fields in

the Anchor Editor will be set back to the default values awaiting input of the next anchor

by the author. The editor continues to accept new anchors in this fashion until the author

presses the “Revert” button. This operation will take the Anchor Editor out of the New

Anchor mode and put it back into the edit current anchor information mode.

2. Adding New Anchors To An Existing World

To add a new anchor to a world database, start the program and load the world.

After the world is loaded, bring up the Anchor Editor as indicated above. From this point

on, the operations are the same as the section above. When the author selects the “New

Anchor” button, all the same default information will be set. Upon filling in all the fields,

the author saves the new anchor to the world by pressing the “Save” button. To add another

anchor, update all the fields and save again. Continue this until all new anchors have been

saved back to the world. Revert or Cancel to end the New Anchor adding.

51

3. Saving The World

If any new anchors are added to the world or if a new world is created, the world

database must be saved to a file to allow the same world to be loaded again. To save the

world, use the “File” pull down menu on the main Hyper-NPSNET control panel. Select

“Save As” and a small dialog box will pop up requesting a file name to save the world to.

This box must be used before any other operation can be performed. In fact the window

manager will not allow any other operations to be performed until the world is saved or the

“Save As” operation is cancelled.

The world is saved in an ascii format and is readable and editable by the author.

Caution must be taken when modifying any world database with a text editor. It is best to

make all changes through the use of the Anchor Editor, but certain types of changes can be

easily and quickly made to the world through this ascii file. These include changes to any

media file name, changes to any anchor’s coordinates or orientation and changes to the

node id’s associated with an anchor. New anchors or nodes should not be added to the

world through this ascii file.

A sample world database file is shown in Figure 31. The actual file is 267 lines

long, so only the first anchor and the associated 4 media nodes are shown. The association

between the anchors and the media nodes is through temporary node id’s. As the file is read

in by the system, all the links between an anchor and it’s nodes are automatically

established.

52

BeginAnchorData
TotalAnchorCount 10

BeginAnchor 1
Name: Zydaville 1
Type: Terrain
Coords: 1135.000000 330.000000 1400.000000
Orientation: 10.000000
AudioNodeID: 1
VideoNodeID: 2
GraphicNodeID: 3
TextNodeID: 4
EndAnchor 1

...

BeginNodeData
TotalNodeCount 40

BeginNode 1
Type: Audio
Filename: /n/elsie/work3/lombardo/hyper/audio/zydaville.aiff
EndNode 1
BeginNode 2
Type: Video
Filename: /usr/zurich/videos/flying-through-billboard
EndNode 2
BeginNode 3
Type: Graphic
Filename: ../graphic/flamethrower.sgi
EndNode 3
BeginNode 4
Type: Text
Filename: Control.H
EndNode 4
...

Figure 31: Sample Hyper-NPSNET Ascii World Database File

53

VI. RESULTS

The main focus of this work is the design and implementation of underlying data

structures to embed multimedia information in a real-time 3D virtual world. The

hypersystem and GUI data structures are discussed in detail in Chapter IV. Discussion of

results in this chapter revolves around three main areas. The first concerns the minimum

capabilities of the software required to have a useful system. The second deals with creation

and implementation of hypermedia databases that can be easily incorporated into training

scenarios. The last deals with hardware performance for Hyper-NPSNET.

A. MINIMUM SOFTWARE CAPABILITY

The software capabilities of the system should include at a minimum: interactive

navigation through the 3D virtual world, anchor selection within the 3D virtual world and

consistency across the user interface. The navigation method chosen uses a typical 2D

mouse. A first time user of the system, therefore, can easily pick up how to move around

within the virtual world in a matter of seconds. This type of ease of use is necessary for a

good user interface.

The operation of Hyper-NPSNET includes user selection of anchors and information

nodes. Since the user is navigating through a 3D virtual world where 3D information

anchors are viewable, anchors need to be selectable directly off the screen. This is

accomplished, in Hyper-NPSNET, with the mouse using a “Point and Click” approach.

This is a very intuitive and common way of interacting with computer applications.

A significant feature of any application is a consistent user interface. The pull-down

menus and pop-up panels of Hyper-NPSNET are common components to user interfaces

of window-based applications on a variety of platforms. This familiarity instills confidence

in the user that he or she understands the flow of operations being performed. Even though

general guidelines exist for the design of user interfaces [Mackinlay91], it was found that

the pop-up panels tended to get somewhat more cluttered than desired. On top of this, there

were no graphics objects at all within the panels. This would crowd the panels even more.

54

Not only is the layout of the interface panels important, the intelligence of the interface is

equally significant. For instance, in the User Preferences panel (see “User Preferences

Panel” in Section IV.B.3.), disabling theAnchor Auto View mode de-sensitizes theAudio,

Video, GraphicsandText buttons, in addition to theDistance type in text field. This same

idea was carried to theMovement andLocal Anchors Only part of the same panel. All the

panels in Hyper-NPSNET have smart buttons that can change their label and sensitivity

dynamically. All writable text fields allow copy and paste type operations from both inside

and outside of Hyper-NPSNET. All these features help make the user interface comfortable

and therefore the application more usable.

B. HYPERMEDIA DATABASE CREATION

Relevant hypermedia “documents” or databases are difficult to generate. For instance,

before a video sequence can be attached to an anchor, it must be produced in some format,

typically VHS. The VHS video is then captured, either partially or completely, using some

sort of dedicated hardware. This hardware could include an NTSC to RGB decoder or a

video input equipped computer such as certain Silicon Graphics Indigo Elans. Once the

video sequence is in a file format, it may undergo one or more rounds of editing before the

content is deemed adequate. This procedure may need to be done on most if not all of the

hypermedia database video sequences. This equates to a lot of time and effort. A similar

argument holds for the Audio nodes as well as the Graphics nodes. This is still true for the

Text nodes, but to a lessor extent.

C. HARDWARE PERFORMANCE

The performance of the underlying hardware is critical to the user “satisfaction” when

using Hyper-NPSNET. A minimal hardware set necessarily includes audio and video

capability. This is obvious from the nature of the program. Beyond this, the faster the

machine the better.

The majority of the development and running of Hyper-NPSNET is done on Silicon

Graphics Indigo Elan workstations. The Elans have full audio and video capability and for

55

the most part their performance in this respect is satisfactory. The shortcomings are in

general rendering speeds. The Elan’s proved to be too slow to run Hyper-NPSNET with a

textured terrain. When texturing is turned off, all objects in the world including buildings,

anchors, trees and the terrain are defined with materials with appropriate lighting. The Elan

can handle this with frame rates in the range of about 10/sec. Once the terrain is textured,

the frame rate drops to about 0.3/sec.

 It is preferable to run the program with texturing turned on in order to create a more

realistic virtual environment, but the frame rate is completely unsatisfactory. The solution

to this problem is to run Hyper-NPSNET on a faster machine. With the program running

on a Silicon Graphics Reality Engine with fully textured terrain, the frame rate is in the 20/

sec range. Currently, the shortcomings of the Reality Engine is the lack of audio support.

What is needed is full audio support at the high end machine level. This is being pursued

by both Silicon Graphics and a third party hardware manufacturer.

When demos of Hyper-NPSNET are given, they are given first on the Reality Engine

to show the high quality textured terrain and smooth motion, and then on the Indigo Elan

to experience the audio aspect of the multimedia. When the high end machines support

audio, the demos will not have this discontinuity and will be more impressive.

56

VII. FUTURE WORK

The main focus of this work was in proof of concept. This leaves a lot of room for

improvement and future work. This chapter presents some of the near term changes needed

to make Hyper-NPSNET more effective as a training and authoring tool.

A. DATABASE FRONT END

As the number of anchors in any world database increases, it gets difficult to

administer the vast amounts of information available to the user. Currently the only

interface to the hyper system, other than in the 3D world, is through the main control panel,

the Anchor Editor panel or the User Preferences panel. This situation can be improved with

the addition of a sophisticated user interface to the hyper system database.

The database front end would allow the user to make queries into the hyper system.

For instance, if the user wanted to know all anchors that had video clips relevant to current

enemy tank positions, he couldask the system and be given a mouse sensitive list that he

could use to view the videos. Another capability would be to list all audio tracks by name

that are used in the current world database, or the number of anchors that make use of a

particular graphics image.

B. NON-TERRAIN ANCHORS

Currently Hyper-NPSNET utilizes only one kind of anchor. This is the Terrain anchor.

Terrain anchors are fixed in 3D space and can only be changed through the anchor editor.

Additional anchor types are planned and include vehicle anchors and temporal anchors.

1. Vehicle Anchors

A vehicle anchor is an anchor that is attached to a vehicle. The vehicle can move

around in the virtual world with the anchor staying attached. Vehicle anchors are handy for

visualizing vehicle capabilities or design. This kind of information is invaluable for

57

individuals training on the simulator. For instance, a training tank driver may query an

enemy vehicle he sees but can’t identify. He can learn the type of vehicle, its locomotion

and weapons capabilities, and even see a video informing him what is known of this vehicle

from previous engagements on record. He could find out where the known weak points in

the armor are and plan his strategy based on what he learns. When the soldier sees this

vehicle again, he will be more capable to make the right decisions.

2. Temporal Anchors

Temporal anchors are useful when there is some time association of information

that the user would like to explore. Temporal anchors would only exist over some time

range and would contain information relevant to the time associated with the anchor. Such

anchors would allow the visibility of attached information only during the window of time

specified with the anchor. For example, a user of Hyper-NPSNET may only wish to view

the video collected in March rather than have the display cluttered with the rest of the year’s

information temporal anchors.

C. NETWORKING

Hyper-NPSNET does not support any networking capability except minimal DIS to a

sound server. The natural evolution of most software these days is toward having network

abilities, and Hyper-NPSNET is no exception. The goal of Hyper-NPSNET is to supply

hypermedia capability to our existing suite of battle field simulators known collectively as

NPSNET [Zyda92]. A current goal of the NPSNET project is to construct simulators that

are interoperable with the DARPA SIMNET system and the follow-on DIS networking

standard [Institute91][Pope89].

D. TERRAIN DATABASE LOADING CAPABILITIES

Another shortcoming of Hyper-NPSNET is the limited support for a variety of

terrains. Currently a 2 Km by 2 Km terrain database from Ft. Hunter Liggett in Central

California is used. There is no current provision allowing other terrain databases to be

58

loaded into Hyper-NPSNET. This improvement is a necessity in order to load any kind of

virtual environment into the program. This also includes the objects that are normally

thought of as being part of the terrain, like buildings, trees and rocks. As software for the

generation of virtual environments advances, its clear that the terrain will need to play a

more dynamic roll in the representation of features [2Zyda93]. Taking this a step further,

the design of terrain base classes (in C++) will certainly contain stationary and non-

stationary objects. This will address the question of what to render and what not to render.

If a terrain object is determined to be in the field of view, then all objects that are “a part

of” that terrain object will be rendered. The point is: in order to take advantage of the

improvements in terrain design, Hyper-NPSNET will need the capability of loading terrain

databases as a user command.

E. MORE SOPHISTICATED AUTHORING

As described in the section on authoring (see “AUTHORING WITH HYPER-

NPSNET” on page 49), the authoring capabilities are somewhat limited. Individual anchors

can be created and saved in hypermedia worlds. As the anchors are created, the user

specifies the file names to be associated with the multimedia links of the information

anchor. The user cannot easily view video clips, for instance, before assigning them to the

anchor. Therefore, along the lines of the comments made above in Section A., the ability to

view video and graphics files and listen to audio files during the authoring process would

streamline the authoring and minimize the time spent in designing hypermedia documents.

F. USER INTERFACE DEVELOPEMENT

The user interface should undergo constant evolution. Since the user interface is the

sole mechanism for the user to interact with Hyper-NPSNET, most of the above suggested

improvements would be incorporated into the user interface. But beyond these specific

improvements, as more users interact with the system, certain operations or situations will

59

occur repeatedly and the user interface should change to make these operations more easily

accomplished. The idea of improving the user interface is necessarily quite vague, because

the interface is most of the program. This point is more a conceptual one than an

implementation one, but certainly over time there will be additional capabilities in the

system and the interface should change so as not to just add the new features but to

incorporate them into an intelligent interface that is friendly and powerful.

G. STANDARDS COMPATIBILITY

A wealth of standards are emerging targeting multimedia and hypermedia data

formats. Some standards are concerned with file data formats like JPEG or MPEG, while

others are concerned with document structure like HyTime. An introduction to relevant

standards is presented below. An important future capability of Hyper-NPSNET would be

to read and write files and documents written in these new standards.

1. MHEG

The Multimedia Hypermedia Experts Group (MHEG) in the Joint Technical

Committee 1 (JTC1) has joint participation from CCITT1. JTC1 is a combined effort from

the International Standards Organization (ISO) and the International Electrotechnical

Commission (IEC). The MHEG group is concerned with the coded representation of final

form multimedia and hypermedia objects that will be interchanged across services and

applications [Price93].

The MHEG group has listed some typical application domains, but in general

anticipates the use of MHEG objects in large scale telematic applications: training and

education, simulation and games, sales and advertising, office information systems,

engineering documentation, culture, electronic publishing and electronic books, public

1. CCITT is a European Standards Committee.

60

information, computer supported cooperative work, medical applications and future classes

of applications.

2. Hytime

HyTime is a SGML-based standard for the representation, archival storage, and

interchange of multimedia and hypermedia documents [Newcomb91]. HyTime adds

conventions to the SGML (Standard Generalized Markup Language, ISO 8879) which

allows a variety of constructs, including hyperlinks and rendition instructions, to be

expressed in a technology-neutral fashion. HyTime is being chosen as a “source code”

representation by those who make large investments in the creation of hypertext and

hypermedia documents, because it will protect such information from technological

obsolescence.

3. JPEG

The Joint Photographic Experts Group (JPEG) is the informal name for ISO’s

SC29/WG10. Through joint participation with CCITT Steering Group (SG) VIII, JPEG has

developed a general purpose compression and encoding standard for grayscale and color

“photographic” still images. This method allows compression and quality to be traded-off

at compression time [Wallace91].

4. MPEG

The Moving Pictures Experts Group (MPEG) is the informal name for ISO’s

SC29/WG11. Through joint participation with CCITT SG XV, MPEG has developed a

standard (MPEG-1) for digital compression of VHS quality moving pictures and CD

quality audio at around 1.5 Mbit/sec. A follow-on standard (MPEG-2), is applicable to

compressed data rates from 3 to 15 Mbit/sec, with quality levels matching today’s laser

video up through tomorrow’s HDTV [Le Gall91].

61

APPENDIX: HYPER-NPSNET USER MANUAL

Much of the detail of using Hyper-NPSNET has been described in various places

through-out the body of this thesis. To simplify the learning process, a brief user manual is

included here.

A. STARTING AND EXITING THE PROGRAM

Hyper-NPSNET is started at the command prompt by entering:

> hyper

The current directory must be~lombardo/hyper/hyper in order to access all the right

subdirectories. This is not true if the user has designed his own hypermedia database, but

is true if theworld.hyp database, created by the author, is used.

To exit Hyper-NPSNET, use theExit selection from theFile pull-down menu or hit

theF3 key while the mouse cursor is anywhere on the main Hyper-NPSNET control panel.

B. LOADING AND SAVING HYPERMEDIA DATABASES

Existing hypermedia databases can be loaded using theOpen selection from theFile

pull-down menu. Blank hypermedia databases can be established using theNew selection

from theFile pull-down menu. To save a database under the same name as previously

saved, use theSave selection from theFile pull-down menu, and to save the database under

a new name, use theSave As selection.

C. MOVEMENT THROUGH THE VIRTUAL WORLD

To move through the world, use the left and right mouse buttons. To move forward,

use the left button and to move backwards, use the right button. When either button is

pressed, a square red outline appears in the middle of the rendering window. Motion will

be straight forward or backward, depending on which button was pressed, as long as the

cursor is kept within the red square. To turn, merely move the cursor in the direction of the

62

desired turn. Move the pointer left of the box to turn left and right of the box to turn right.

If the pointer is moved above or below the box, the pitch can be changed to either climb or

descend. The further the cursor is from the closest edge of the red square, the faster the rate

of turning.

As motion is occurring, the speed is kept constant. The speed can be set or changed

through the User Preference pop-up panel. The panel can be displayed using the

Preferences selection from theEdit pull-down menu.

If the user becomes disoriented, the initial view can be reset using theReset View

command. This command is found on theDisplay pull-down menu on the main Hyper-

NPSNET control panel.

D. TO CREATE OR EDIT INFORMATION ANCHORS

Creating new anchors and editing existing anchors are similar operations. All of this

is done through the Anchor Editor Panel. The panel can be display using theAnchor

selection from theEdit pull-down menu. With the Anchor Editor panel up, an anchor’s

name, type, orientation, coordinates, audio filename, video filename, graphics filename or

text filename can be changed by placing the cursor in the text field widget and pressing the

left mouse button to activate that text-field. Cutting and pasting work the same as in most

other X based applications. When all changes are made, the anchor can be saved by

selecting theSave button at the bottom of the panel. To revert back to the previously save

version of the anchor, select theRevert button.

To create a new anchor, select theNew Anchor button. All the text fields will be filled

in with a default selection indicating this is a new anchor. Merely overwrite the entries with

the desired values and then save the anchor. The new anchor will appear on the anchor list

on the main panel. Once theNew Anchor button is selected, the Anchor Editor goes into

“New Anchor” mode. In this mode, new anchors can be rapidly added to the database. To

63

exit this mode and go back to the “View Current Anchor” mode, selectRevert. To close

the anchor editor, select theClose button or select theAnchor command from theEdit

pull-down menu again.

E. TO SET USER PREFERENCES

User preferences for Hyper-NPSNET include: flying speed, what anchors are

displayed and when anchor information is displayed. These values are changed using the

User Preferences Panel. This panel is displayed using thePreferences selection from the

Edit pull-down menu.

To set the flying speed, move the cursor into theSpeed text field widget and using a

combination of highlighting with the mouse or using the delete key to erase characters,

enter the desired speed. The default flying speed is 8.0. This is a relative number and not

any absolute speed like meters/min.

To select that only local anchors are to be displayed, select theLocal Anchors Only

radio button. This will insure that only the anchors that are within the stated range from the

users eye point will be displayed. The default distance is set to 300.0 meters. This distance

can be changed to any value using the appropriate text field widget. The default is not to

have Local Anchors Only, therefore all anchors will be displayed in the default setting.

Information attached to anchors can be retrieved automatically by selecting the

Anchor Auto View radio button and the appropriate combination of what type of

information desired. Once the automatic retrieval is set, whenever the user approaches

within the specified distance from the anchor, the information is displayed. This is known

as audio or video landmines. The default is no automatic retrieval.

F. ANCHOR SELECTION AND MULTIMEDIA QUERYING

Information anchors can be selected and queried in a few different ways. After loading

a hypermedia database, all available anchors are listed in the scrolled listing widget on the

64

main panel. Using the mouse, any anchor can be selected from the list by placing the mouse

cursor over the desired anchor and either double clicking the left mouse button or pressing

the left mouse button once followed by pressing theJump button at the bottom of the

listing widget. Upon selection in this manner, the user’s eyepoint undergoes an instant

aspect change to the coordinates and orientation of the selected anchor.

Another method for selecting anchors is to pick them right off the rendering window

with the mouse. Position the mouse cursor on the desired anchor and press the middle

mouse button. The selected anchor will be highlighted in the scrolled listing widget of the

main panel. Selection of anchors in this way does not cause an aspect change for the user’s

eyepoint.

Either of the two methods described will cause the anchor selected to become the

current selected anchor. Upon selection, the anchor name, type and coordinates will appear

on the main Hyper-NPSNET panel. If the anchor has any multimedia files attached, then

the appropriateAudio, Video, Graphics or Text buttons will be sensitive and can be

pressed to view that file.

As described above, the user can set a preference to have certain anchor information

displayed automatically as the user passes in close proximity to the anchor. This isAnchor

Auto View mode, and is set using the User Preferences panel.

65

LIST OF REFERENCES

[Card91] Card, Stuart K., Robertson, George G., Mackinlay, Jock D., “The
Information Visualizer: An Information Workspace,”Human Factors in
Computing Systems(ACM SIGCHI Conference Proceedings), 1991, pp.
181-188.

[Halasz88] Halasz, F.G., “Reflections on NoteCards: Seven Issues for the Next
Generation of Hypermedia Systems,”Communications of the ACM,
Volume 31, Number 7, July 1988, pp. 836-852.

[Institute91] Institute for Simulation and Training, “Protocol Data Units for Entity
Information and Entity Interaction in a Distributed Interactive
Simulation,” Military Standard (DRAFT), IST-PD-90-2, Orlando, FL,
September 1991.

[Le Gall91] Le Gall, Didier, “MPEG: A Video Compression Standard for Multimedia
Applications,” The Communications of the ACM, Volume 34, Number 4,
April 1991, pp. 46-58.

[Mackinlay91] Mackinlay, Jock D., Robertson, George G., Card, Stuart K., “The
Perspective Wall: Detail and Context Smoothly Integrated,”Human
Factors in Computing Systems (ACM SIGCHI Conference Proceedings),
1991, pp. 173-179.

[Marcus92] Marcus, Aaron,Graphic Design for Electronic Documents and User
Interfaces,ACM Press, Addison Wesley, 1992.

[de Mey93] de Mey, Vicky and Gibbs, Simon, “A Multimedia Component Kit,
Experiences with Visual Composition of Applications,”ACM
Multimedia 93 Conference Proceedings, Anaheim, CA, August 1993, pp.
291-300.

[Newcomb91] Newcomb, Steven R., Kipp, Neill A., and Newcomb, Victoria T., “The
HyTime Hypermedia/Time-based Document Structuring Language,”The
Communications of the ACM, Volume 34, Number 11, November 1991,
pp. 67-83.

[Nielsen90] Nielsen, Jakob,Hypertext and Hypermedia, Academic Press, 1990.

[Phillips91] Phillips, Richard L., “MediaView: A General Multimedia Digital
Publication System,”Communications of the ACM, Volume 34, Number
7, July 1991, pp. 74-83.

[Pope89] Pope, Arthur, “The SIMNET Network and Protocols,” BBN Report No.
7102, BBN Systems and Technologies, Cambridge, MA, July 1989.

66

[Price93] Price, Roger, “MHEG: An Introduction to the future International
Standard for Hypermedia Object Interchange,”ACM Multimedia 93
Conference Proceedings, Anaheim, CA, August 1993, pp. 121-128.

[Robertson91] Robertson, George G., Mackinlay, Jock D., Card, Stuart K., “Cone Trees:
Animated 3D Visualizations of Hierarchical Information,”Human
Factors in Computing Systems (ACM SIGCHI Conference Proceedings),
1991, pp. 189-194.

[Wallace91] Wallace, Gregory K., “The JPEG Still Picture Compression Standard,”
The Communications of the ACM, Volume 34, Number 4, April 1991, pp.
30-44.

[Ware90] Ware, Colin and Osborne, Steven, “Exploration and Virtual Camera
Control in Virtual Three Dimensional Environments,”1990 Symposium
on Interactive 3D Graphics, ACM SIGGRAPH - Computer Graphics,
Volume 24, Number 2, March 1990, pp. 175-183.

[Wilson92] Wilson, Kalin P., “NPSGDL: An Object Oriented Graphics Description
Language for Virtual World Application Support,” Masters’s Thesis,
Naval Postgraduate School, Monterey, California, September 1992.

[Zyda91] Zyda, Michael and Pratt, David, “NPSNET: A 3D Visual Simulator for
Virtual World Exploration and Experimentation,”1991 SID International
Symposium Digest of Technical Papers, Volume XXII, 8 May 1991, pp.
361-364.

[Zyda92] Zyda, Michael J., Pratt, David R., Mohahan, James G., Wilson, Kalin P.,
“NPSNET: Constructing a 3D Virtual World,”1992 Symposium on
Interactive 3D Graphics, March 1992, pp. 147-155.

[1Zyda93] Zyda, Michael J., Lombardo, Chuck, Pratt, David R., “Hypermedia and
Networking in the Development of Large-Scale Virtual Environments,”
The Third International Conference on Artificial Reality and Tele-
Existence”, ICAT 93, July 6-7, 1993, pp. 33-39.

[2Zyda93] Zyda, Michael J., Pratt, David R., Falby, John S., Lombardo, Chuck and
Kelleher, Kristen M., “The Software Required for the Computer
Generation of Virtual Environments,” accepted for a future issue of
Presence.

67

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library 2
Code 052
Naval Postgraduate School
Monterey, CA 93943

3. Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Tradoc Analysis Command 2
Code TRAC
Naval Postgraduate School
Monterey, CA 93943

5. Professor Michael J. Zyda 2
Code CSZk
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

6. LCDR John Falby 2
Code CSFa
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

7. Professor David R Pratt 1
Code CSPr
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

8. Mr. Charles P. Lombardo 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

